Assignment 6

1. Take a thin tube of inner radius a and outer radius b. It is made of a non-magnetic conducting material of conductivity σ which is the inverse of the resistivity. As soon as a magnet of magnetic moment M and mass m is dropped through the tube, it attains a terminal velocity $v_{T}=\frac{m g}{k}$. If $k \propto \frac{\mu_{0}^{\alpha} \sigma^{\beta} M^{\gamma}(b-a)^{\delta}}{a^{4}}$ then the values of $\alpha, \beta, \gamma, \delta$ are respectively:
A. $2,1,2,1$
B. $1,2,2,1$
C. $1,1,2,2$
D. $2,1,1,2$
2. Shown in the circuit is a square loop made of 4 resisters around a solenoid shown by circular shaded region.

The current in the solenoid changes with time so that the EMF developed is 20 V . When a voltmeter is connected across the 3Ω resister in two different ways giving the voltage V_{1} and V_{2} respectively. Then
A. $V_{1}=V_{2}=6 \mathrm{~V}$
B. $V_{1}=14 V$ and $V_{2}=6 \mathrm{~V}$
C. $V_{1}=6 \mathrm{~V}$ and $V_{2}=14 \mathrm{~V}$
D. $V_{1}=V_{2}=14 \mathrm{~V}$
3. A charged particle of charge q is moving along the positive z-axis with constant speed v. It passes the origin at time $t=0$. At a later time t, the displacement current density at the origin is: $(v \ll c)$
A. $\frac{1}{4 \pi \epsilon_{0}} \frac{q}{v^{2} t^{2}} \hat{z}$
B. $\frac{-1}{2 \pi \epsilon_{0}} \frac{q}{v^{2} t^{2}} \hat{z}$
C. $\frac{1}{2 \pi} \frac{q}{v^{2} t^{3}} \hat{z}$
D. $\frac{-1}{4 \pi} \frac{q}{v^{2} t^{3}} \hat{z}$
4. If the charged particle of problem 3 produces a magnetic field $\vec{B}(t)$ at a distance R from the origin in the xy-plane, then $\vec{B}(t)$ is: (polar coordinates are used)
A. 0
B. $\frac{1}{c^{2}} \frac{q v^{2} t}{\left(R^{2}+v^{2} t^{2}\right)^{\frac{3}{2}}} \hat{\phi}$
C. $\frac{1}{4 \pi \epsilon_{0}} \frac{q v R}{\left(R^{2}+v^{2} t^{2}\right)^{\frac{3}{2}}} \hat{\phi}$
D. $\frac{\mu_{0}}{4 \pi} \frac{q v R}{\left(R^{2}+v^{2} t^{2}\right)^{\frac{3}{2}}} \hat{\phi}$
5. A sphere carries surface charge density σ. Its centre is at the origin and it is rotating about the z-axis with angular speed $\vec{\omega}=\omega \hat{z}$. The Poynting vector $\vec{S}(\theta)$ just outside its surface is given as:
A. $\frac{\sigma^{2} R \omega}{\epsilon_{0}} \hat{\phi}$
B. $\frac{\sigma^{2} R \omega}{3 \epsilon_{0}} \sin \theta \hat{\phi}$
C. $\frac{\sigma^{2} R \omega}{2 \epsilon_{0}} \cos \theta \hat{\phi}$
D. $\frac{\sigma^{2} R \omega}{3 \epsilon_{0}} \cos \theta \hat{\phi}$
6. A long solenoid with radius R has n turns per unit length and is carrying a current I_{0} at time $t=0$. If the current for $t>0$ changes as $I=I_{0}+\alpha t$, then Poynting vector just inside the cylindrical surface of the solenoid will be: (use cylindrical coordinates)
A. $\frac{n^{2} R^{2} \alpha^{2} t}{2} \hat{s}$
B. $\frac{-\mu^{2} n^{2} R^{2} \alpha\left(I_{0}+\alpha t\right)}{4} \hat{s}$
C. $\frac{-\mu n^{2} R^{2} \alpha\left(I_{0}+\alpha t\right)}{4} \hat{s}$
D. $\frac{-\mu n^{2} R \alpha\left(I_{0}+\alpha t\right)}{2} \hat{s}$
7. Consider two large circular plates of radius a forming a capacitor with the distance between the plates being d. They carry an initial charge $\pm Q$ as shown.

If they are connected by a thin wire passing through their centre, a current starts flowing through the wire. If the resistance of the wire is R, what will be the magnetic field at a distance s from the wire at point P : (assume wire to be long wire and use the cylindrical coordinates)
A. $\frac{\mu_{0}}{4 \pi} \frac{Q_{0}}{R C} e^{-\frac{t}{R C}}\left(\frac{a}{s^{2}}-\frac{1}{s}\right) \hat{\phi}$
B. $\frac{\mu_{0}}{4 \pi} \frac{Q_{0}}{R C} e^{-\frac{t}{R C}}\left(\frac{a}{s^{2}}+\frac{1}{s}\right) \hat{\phi}$
C. $\frac{\mu_{0}}{4 \pi} \frac{Q_{0}}{R C} e^{-\frac{t}{R C}}\left(\frac{1}{s}-\frac{s}{a^{2}}\right) \hat{\phi}$
D. $\frac{\mu_{0}}{4 \pi} \frac{Q_{0}}{R C} e^{-\frac{t}{R C}}\left(\frac{a}{s^{2}}-\frac{s}{a^{2}}\right) \hat{\phi}$
8. The Poynting vector in problem 7 at a distance s from the wire at point P (using cylindrical coordinates) is:
A. $\frac{-Q_{0}^{2}}{2 \pi a^{2} \epsilon_{0} R C} e^{-\frac{2 t}{R C}}\left(\frac{1}{s}-\frac{s}{a^{2}}\right) \hat{s}$
B. $\frac{Q_{0}^{2}}{2 \pi a^{2} \epsilon_{0} R C} e^{-\frac{2 t}{R C}}\left(\frac{1}{s}+\frac{s}{a^{2}}\right) \hat{s}$
C. $\frac{-Q_{0}^{2}}{2 \pi a^{2} \epsilon_{0} R C} e^{-\frac{2 t}{R C}}\left(\frac{a}{s^{2}}-\frac{s}{a^{2}}\right) \hat{s}$
D. $\frac{Q_{0}^{2}}{2 \pi a^{2} \epsilon_{0} R C} e^{-\frac{2 t}{R C}}\left(\frac{1}{s}-\frac{s}{a^{2}}\right) \hat{s}$

