Assignment 5

1. The value of the integral $\int_{\phi'=0}^{2\pi} \int_{\theta'=0}^{\pi} \frac{\cos \theta' \sin \theta' d\theta' d\phi'}{\sqrt{(R^2 + r^2 - 2Rr(\cos \theta \cos \theta' + \sin \theta \sin \theta' \cos(\phi - \phi'))}}$ is: (assume ϕ -symmetry)

(a)
$$\frac{-R\cos\theta}{3r^2}$$
 for $r > R$, $\frac{-r\cos\theta}{3}$ for $r < R$
(b) $\frac{R\cos\theta}{3r^2}$ for $r > R$, $\frac{r\cos\theta}{3}$ for $r < R$
(c) $\frac{-2R\cos\theta}{3r^2}$ for $r > R$, $\frac{-2r\cos\theta}{3}$ for $r < R$

- (c) $\frac{-2R\cos\theta}{3r^2}$ for r > R, $\frac{-2r\cos\theta}{3}$ for r < R(d) $\frac{2R\cos\theta}{3r^2}$ for r > R, $\frac{2r\cos\theta}{3R^2}$ for r < R.
- 2. A uniformly charged thin spherical shell carrying charge density σ is rotating at angular speed ω about the z-axis. Current density for the system is given by: (Spherical coordinates are used)
 - (a) $\vec{j}(\vec{r}) = \sigma \omega R \sin \theta \hat{\phi}$
 - (b) $\vec{j}(\vec{r}) = \sigma \omega R \cos \theta \hat{\phi}$
 - (c) $\vec{j}(\vec{r}) = \sigma \omega r \delta(r R) \sin \theta \hat{\phi}$
 - (d) $\vec{j}(\vec{r}) = \sigma \omega r \delta(r R) \cos \theta \hat{\phi}$.

3. The value of the integral $\int_{0}^{2\pi} \int_{-\infty}^{\infty} \frac{d\phi' dz'}{\sqrt{r^2 + R^2 - 2Rr\cos(\phi - \phi') + (z - z')^2}}$ is: (Hint: Use Gauss's law for a uniformly charged infinitely long cylindrical shell) (a) $2\pi \ln(\frac{R}{r})$ for r > R, 0 for $r \le R$

- (b) $2\ln(\frac{R}{r})$ for r > R, 0 for $r \le R$
- (c) $\pi \ln(\frac{R}{r})$ for r > R, $\pi(R-r)$ for r < R
- (d) $2\ln(\frac{R}{r})$ for all r.
- 4. A thin disc carries uniform magnetization \vec{M} perpendicular to its flat surface. If it is kept in the xy-plane with its axis on the z-axis with $\vec{M} = M\hat{z}$, the auxiliary field \vec{H} and magnetic field \vec{B} just outside the upper surface on the axis is:
 - (a) $\vec{H} = \vec{M}$, $\vec{B} = 0$
 - (b) $\vec{H} = \vec{M}$, $\vec{B} = \mu_0 \vec{M}$
 - (c) $\vec{H} = 0$, $\vec{B} = 0$
 - (d) $\vec{H}=-\vec{M}$, $\vec{B}=0.$

- 5. For the disc given in question (4), the fields inside the disc near its axis are:
 - (a) $\vec{H} = -\vec{M}$, $\vec{B} = 0$ (b) $\vec{H} = \vec{M}$, $\vec{B} = \mu_0 \vec{M}$ (c) $\vec{H} = \vec{M}$, $\vec{B} = 2\mu_0 \vec{M}$ (d) $\vec{H} = 0$, $\vec{B} = 0$.
- 6. Consider a long cylindrical rod of length L and radius R (where R << L). Take its axis to be the z axis. It carries magnetization $\vec{M} = M\hat{x}$. Using cylindrical co ordinates find out $\nabla .\vec{H}$ at s, far from the circular surface:
 - (a) $M \sin \phi \delta(s-R)$
 - (b) $-M\cos\phi\delta(s-R)$
 - (c) $M\sin\phi\delta(s-R)$
 - (d) $M \cos \phi \delta(s R)$.
- 7. The auxiliary field \vec{H} and magnetic field \vec{B} inside the magnetized cylinder in Question no 6 is:
 - (a) $\vec{H} = -\vec{M}/2$, $\vec{B} = \frac{\mu_0 \vec{M}}{2}$ (b) $\vec{H} = -\vec{M}$, $\vec{B} = 0$ (c) $\vec{H} = \vec{M}$, $\vec{B} = 2\mu_0 \vec{M}$
 - (d) $\vec{H} = 0$, $\vec{B} = \mu_0 \vec{M}$.
- 8. A superconductor has zero magnetic field inside it. If a solid sphere of superconducting material is placed in a uniform magnetic field \vec{B} then \vec{M} and \vec{H} developed in the sphere are:
 - (a) $\vec{M} = 0, \vec{H} = 0$
 - (b) $\vec{M} = -\vec{B}, \vec{H} = \vec{B}$
 - (c) $\vec{M} = \frac{-2\vec{B}}{3}, \vec{H} = \frac{2\vec{B}}{3}$
 - (d) $\vec{M} = \frac{-3\vec{B}}{2}, \vec{H} = \frac{3\vec{B}}{2}.$
- 9. Value of χ_M for a superconductor is:
 - (a) 0
 - (b) -1
 - (c) μ_0
 - (d) 1.

- 10. If a magnetic dipole m \hat{z} is kept at the origin in a magnetic material of susceptibility χ_M , the auxiliary field \vec{H} at $r \neq 0$ satisfies:
 - (a) $\nabla . \vec{H} = 0$ and $\nabla \times \vec{H} = 0$
 - (b) $\nabla . \vec{H} = 0$ and $\nabla \times \vec{H} \neq 0$
 - (c) $\nabla . \vec{H} \neq 0$ and $\nabla \times \vec{H} \neq 0$
 - (d) $\nabla . \vec{H} \neq 0$ and $\nabla \times \vec{H} = 0$.
- 11. The auxiliary field \vec{H} for point dipole in problem (10) is:
 - (a) $\vec{H} = 0$ (b) $\vec{H} = \chi_M \frac{3(\vec{m}.\hat{r})\hat{r} - \vec{m}}{4\pi r^3}$ (c) $\vec{H} = \frac{3(\vec{m}.\hat{r})\hat{r} - \vec{m}}{4\pi r^3}$ (d) $\vec{H} = \frac{\mu_0}{4\pi} \chi_M \frac{3(\vec{m}.\hat{r})\hat{r} - \vec{m}}{r^3}.$