Assignment 5

1. The value of the integral $\int_{\phi^{\prime}=0}^{2 \pi} \int_{\theta^{\prime}=0}^{\pi} \frac{\cos \theta^{\prime} \sin \theta^{\prime} d \theta^{\prime} d \phi^{\prime}}{\sqrt{\left(R^{2}+r^{2}-2 R r\left(\cos \theta \cos \theta^{\prime}+\sin \theta \sin \theta^{\prime} \cos \left(\phi-\phi^{\prime}\right)\right)\right.}}$ is: (assume ϕ-symmetry)
(a) $\frac{-R \cos \theta}{3 r^{2}}$ for $r>R, \frac{-r \cos \theta}{3}$ for $r<R$
(b) $\frac{R \cos \theta}{3 r^{2}}$ for $r>R, \frac{r \cos \theta}{3}$ for $r<R$
(c) $\frac{-2 R \cos \theta}{3 r^{2}}$ for $r>R, \frac{-2 r \cos \theta}{3}$ for $r<R$
(d) $\frac{2 R \cos \theta}{3 r^{2}}$ for $r>R, \frac{2 r \cos \theta}{3 R^{2}}$ for $r<R$.
2. A uniformly charged thin spherical shell carrying charge density σ is rotating at angular speed ω about the z-axis. Current density for the system is given by: (Spherical coordinates are used)
(a) $\vec{j}(\vec{r})=\sigma \omega R \sin \theta \hat{\phi}$
(b) $\vec{j}(\vec{r})=\sigma \omega R \cos \theta \hat{\phi}$
(c) $\vec{j}(\vec{r})=\sigma \omega r \delta(r-R) \sin \theta \hat{\phi}$
(d) $\vec{j}(\vec{r})=\sigma \omega r \delta(r-R) \cos \theta \hat{\phi}$.
3. The value of the integral $\int_{0}^{2 \pi} \int_{-\infty}^{\infty} \frac{d \phi^{\prime} d z^{\prime}}{\sqrt{r^{2}+R^{2}-2 R r \cos \left(\phi-\phi^{\prime}\right)+\left(z-z^{\prime}\right)^{2}}}$ is: (Hint: Use Gauss's law for a uniformly charged infinitely long cylindrical shell)
(a) $2 \pi \ln \left(\frac{R}{r}\right)$ for $r>R, 0$ for $r \leq R$
(b) $2 \ln \left(\frac{R}{r}\right)$ for $r>R, 0$ for $r \leq R$
(c) $\pi \ln \left(\frac{R}{r}\right)$ for $r>R, \pi(R-r)$ for $r<R$
(d) $2 \ln \left(\frac{R}{r}\right)$ for all r.
4. A thin disc carries uniform magnetization \vec{M} perpendicular to its flat surface. If it is kept in the $x y-$ plane with its axis on the z-axis with $\vec{M}=M \hat{z}$, the auxiliary field \vec{H} and magnetic field \vec{B} just outside the upper surface on the axis is:
(a) $\vec{H}=\vec{M}, \vec{B}=0$
(b) $\vec{H}=\vec{M}, \vec{B}=\mu_{0} \vec{M}$
(c) $\vec{H}=0, \vec{B}=0$
(d) $\vec{H}=-\vec{M}, \vec{B}=0$.
5. For the disc given in question (4), the fields inside the disc near its axis are:
(a) $\vec{H}=-\vec{M}, \vec{B}=0$
(b) $\vec{H}=\vec{M}, \vec{B}=\mu_{0} \vec{M}$
(c) $\vec{H}=\vec{M}, \vec{B}=2 \mu_{0} \vec{M}$
(d) $\vec{H}=0, \vec{B}=0$.
6. Consider a long cylindrical rod of length L and radius R (where $\mathrm{R} \ll \mathrm{L}$). Take its axis to be the z axis. It carries magnetization $\vec{M}=M \hat{x}$. Using cylindrical co ordinates find out $\nabla \cdot \vec{H}$ at s, far from the circular surface:
(a) $M \sin \phi \delta(s-R)$
(b) $-M \cos \phi \delta(s-R)$
(c) $M \sin \phi \delta(s-R)$
(d) $M \cos \phi \delta(s-R)$.
7. The auxiliary field \vec{H} and magnetic field \vec{B} inside the magnetized cylinder in Question no 6 is:
(a) $\vec{H}=-\vec{M} / 2, \vec{B}=\frac{\mu_{0} \vec{M}}{2}$
(b) $\vec{H}=-\vec{M}, \vec{B}=0$
(c) $\vec{H}=\vec{M}, \vec{B}=2 \mu_{0} \vec{M}$
(d) $\vec{H}=0, \vec{B}=\mu_{0} \vec{M}$.
8. A superconductor has zero magnetic field inside it. If a solid sphere of superconducting material is placed in a uniform magnetic field \vec{B} then \vec{M} and \vec{H} developed in the sphere are:
(a) $\vec{M}=0, \vec{H}=0$
(b) $\vec{M}=-\vec{B}, \vec{H}=\vec{B}$
(c) $\vec{M}=\frac{-2 \vec{B}}{3}, \vec{H}=\frac{2 \vec{B}}{3}$
(d) $\vec{M}=\frac{-3 \vec{B}}{2}, \vec{H}=\frac{3 \vec{B}}{2}$.
9. Value of χ_{M} for a superconductor is:
(a) 0
(b) -1
(c) μ_{0}
(d) 1 .
10. If a magnetic dipole $m \hat{z}$ is kept at the origin in a magnetic material of susceptibility χ_{M}, the auxiliary field \vec{H} at $r \neq 0$ satisfies:
(a) $\nabla \cdot \vec{H}=0$ and $\nabla \times \vec{H}=0$
(b) $\nabla \cdot \vec{H}=0$ and $\nabla \times \vec{H} \neq 0$
(c) $\nabla \cdot \vec{H} \neq 0$ and $\nabla \times \vec{H} \neq 0$
(d) $\nabla \cdot \vec{H} \neq 0$ and $\nabla \times \vec{H}=0$.
11. The auxiliary field \vec{H} for point dipole in problem (10) is:
(a) $\vec{H}=0$
(b) $\vec{H}=\chi_{M} \frac{3(\vec{m} \cdot \hat{r}) \hat{r}-\vec{m}}{4 \pi r^{3}}$
(c) $\vec{H}=\frac{3(\vec{m} \cdot \hat{r}) \hat{r}-\vec{m}}{4 \pi r^{3}}$
(d) $\vec{H}=\frac{\mu_{0}}{4 \pi} \chi_{M} \frac{3(\vec{m} \cdot \hat{r}) \hat{r}-\vec{m}}{r^{3}}$.
