Assignment 4

Prof. MK Harbola

February 2, 2015

Q1. A point charge q is in front of a dielectric semi-infinite slab of dielectric constant K. The distance between the plane and the charge is d. Take the plane to be in the $Y Z$-plane and the charge on the x-axis. To calculate the potential and electric field in $x \geq 0$ region, we place an image charge q_{1} at $x=-d$ and to calculate the potential and the field in $x \leq 0$ region, we replace q by q_{2}. To satisfy the required boundary conditions we need:

(a) $q_{1}=-q, q_{2}=q$
(b) $q_{1}=-\left(\frac{K-1}{K+1}\right) q, q_{2}=\left(\frac{2 K}{K+1}\right) q$
(c) $q_{1}=\left(\frac{K-1}{K+1}\right) q, q_{2}=-\left(\frac{2 K}{K+1}\right) q$
(d) $q_{1}=-\left(\frac{K-1}{K+1}\right) q, q_{2}=\left(\frac{2}{K+1}\right) q$.

Q2. A solid infinitely long cylinder with its axis on the z-axis carries a polarization $\vec{P}=P_{0} \hat{x}$. The displacement vector inside the dielectric is:
(a) $P_{0} \hat{x}$
(b) $\frac{1}{2} P_{0} \hat{x}$
(c) $-\frac{1}{2} P_{0} \hat{x}$
(d) $\frac{3}{2} P_{0} \hat{x}$.

Q3. A parallel plate capacitor has plates perpendicular to the z-axis and two dielectric slabs of dielectric constants K_{1} and K_{2} are placed in between (see figure). Ignoring fringing effects the boundary condition at the dielectric interface is:

(a) $E_{1 z}=E_{2 z}$
(b) $D_{1 x}=D_{2 x} \neq 0$
(c) $D_{1 y}=D_{2 y}$
(d) $D_{1 z}=D_{2 z}$.

Q4. A sphere carries a polarization $\vec{P}=P_{0} \hat{z}$. Electric field just outside its equator in the plane perpendicular to \hat{z} is:
(a) $\frac{P_{0}}{\epsilon_{0}} \hat{z}$
(b) $-\frac{P_{0}}{2 \epsilon_{0}} \hat{z}$
(c) $-\frac{P_{0}}{3 \epsilon_{0}} \hat{z}$
(d) $-\frac{P_{0}}{\epsilon_{0}} \hat{z}$.

Q5. If a point charge Q is kept at the centre of a dielectric sphere with radius R (dielectric constant K) the potential $V(r)$, where r is measured from the centre of the sphere, is: (Take $V(\infty)=0)$
(a) $V(r)=\frac{1}{4 \pi \epsilon_{0}} \frac{Q}{K r}$ for all r
(b) $V(r)= \begin{cases}\frac{1}{4 \pi \epsilon_{0}} \frac{Q}{K r} & \text { if } r>R \\ \frac{Q}{4 \pi \epsilon_{0}}\left[\frac{1}{r}-\frac{1-K}{K R}\right] & \text { if } r \leq R\end{cases}$
(c) $V(r)= \begin{cases}\frac{1}{4 \pi \epsilon_{0}} \frac{Q}{r} & \text { if } r>R \\ \frac{1}{4 \pi \epsilon_{0}} \frac{Q}{K r} & \text { if } r \leq R\end{cases}$
(d) $V(r)=\left\{\begin{array}{ll}\frac{1}{4 \pi \epsilon_{0}} \frac{Q}{r} & \text { if } r>R \\ \frac{Q}{4 \pi \epsilon_{0}}\left[\frac{1}{K r}-\frac{K-1}{K R}\right] & \text { if } r \leq R\end{array}\right.$.

Q6. Consider a long cylinder with its axis on the z-axis. It is made of a dielectric material of electric susceptibility χ_{e}. If it is put in a uniform electric field $\vec{E}=E_{0} \hat{y}$, the electric field \vec{E}, polarization \vec{P} and displacement current \vec{D} are, respectively,
(a) $E \hat{y}, \chi_{e} \epsilon_{0} E \hat{y},\left(1+\chi_{e}\right) \epsilon_{0} \vec{E}$
(b) $\frac{E}{1+\chi_{e}} \hat{y}, \frac{\chi_{e} \epsilon_{0}}{1+\chi_{e}} \vec{P}, \epsilon_{0} \vec{E}$
(c) $\frac{2}{2+\chi_{e}} E \hat{y}, \frac{2 \chi_{e}}{2+\chi_{e}} \epsilon_{0} E \hat{y}, 2\left(\frac{1+\chi_{e}}{2+\chi_{e}}\right) \epsilon_{0} E \hat{y}$
(d) $\frac{E}{2+\chi_{e}} \hat{y}, \frac{\chi_{e} \epsilon_{0}}{2+\chi_{e}} E \hat{y},\left(\frac{1+\chi_{e}}{2+\chi_{e}}\right) E \hat{y}$.

Q7. Consider the field inside and outside a long solenoid carrying a surface current K. The magnetic field inside the solenoid is $\mu_{0} K \hat{z}$ and the axis of the solenoid coincides with the z-axis. If R is the radius of the solenoid, then on the basis of these facts and Biot-Savart law the value of the integral

$$
\int_{-\infty}^{\infty} \mathrm{d} z^{\prime} \int_{0}^{2 \pi} \mathrm{~d} \phi^{\prime} \frac{R-r \cos \left(\phi-\phi^{\prime}\right)}{\left(z^{2}+R^{2}+r^{2}-2 r R \cos \left(\phi-\phi^{\prime}\right)\right)^{3 / 2}}
$$

is:
(a) $\frac{4 \pi}{R}$ for all r
(b) $\frac{4 \pi}{R}$ for $r<R$ and 0 for $r>R$
(c) $\frac{2 \pi}{R}$ for $r<R$ and 0 for $r>R$
(d) $\frac{1}{R}$ for $r<R$ and 0 for $r>R$.

Q8. A disc with its centre at the origin and the axis as the z-axis carries a uniform charge density σ. If it is rotating with an angular velocity ω then the magnetic field on the z-axis at $z=h$ will be:
(a) $\frac{\mu_{0} \sigma \omega}{2}\left[\frac{R^{2}+2 h^{2}}{\sqrt{R^{2}+h^{2}}}-2 h\right]$
(b) $\mu_{0} \sigma \omega\left[\sqrt{R^{2}+h^{2}}-h\right]$
(c) $2 \mu_{0} \sigma \omega\left[\sqrt{R^{2}+h^{2}}-h\right]$
(d) $\frac{\mu_{0} \sigma \omega R^{2}}{\sqrt{R^{2}+h^{2}}}$.

Q9. Consider a thin solenoid of length L and radius $a(L \gg a)$ bent into the shape of a ring so that it makes a toroid which is kept with its centre at the origin and the axis on the z-axis with the magnetic field in it being in the $\hat{\phi}$ direction. The solenoid carries a current I and it has N turns. Taking into account the similarity of the equations $\vec{\nabla} \times \vec{B}=\mu_{0} \vec{J}$ and $\vec{\nabla} \times \vec{A}=\vec{B}$, the vector potential for this toroid on the z-axis at z will be:
(a) $\frac{\mu_{0} L a^{2} N I}{2\left(L^{2}+z^{2}\right)^{3 / 2}}$
(b) $\frac{\mu_{0} L a^{2} N I}{\left(L^{2}+4 \pi z^{2}\right)^{3 / 2}}$
(c) $\frac{\mu_{0} \pi L a^{2} N I}{4\left(L^{2}+4 \pi z^{2}\right)^{3 / 2}}$
(d) $\frac{\mu_{0} \pi L a^{2} N I}{2\left(L^{2}+4 \pi^{2} z^{2}\right)^{3 / 2}}$.

Q10. Magnetic vector potential on the z-axis of the uniformly charged disc of Q8 is:(Use $\nabla^{2} \vec{A}=-\mu_{0} \vec{J}$ to calculate it.)
(a) $\frac{\mu_{0} \sigma \omega z^{2}}{R} \hat{\phi}$
(b) 0
(c) $\frac{\mu_{0} \sigma \omega R^{2}}{\sqrt{R^{2}+z^{2}}} \hat{z}$
(d) $\mu_{0} \sigma \omega z \hat{z}$.

