Assignment 4 Prof. MK Harbola February 2, 2015

Q1. A point charge q is in front of a dielectric semi-infinite slab of dielectric constant K. The distance between the plane and the charge is d. Take the plane to be in the YZ-plane and the charge on the x-axis. To calculate the potential and electric field in $x \ge 0$ region, we place an image charge q_1 at x = -d and to calculate the potential and the field in $x \le 0$ region, we replace q by q_2 . To satisfy the required boundary conditions we need:

(d) $q_1 = -\left(\frac{K-1}{K+1}\right)q$, $q_2 = \left(\frac{2}{K+1}\right)q$.

- Q2. A solid infinitely long cylinder with its axis on the z-axis carries a polarization $\vec{P} = P_0 \hat{x}$. The displacement vector inside the dielectric is:
 - (a) $P_0 \hat{x}$
 - (b) $\frac{1}{2}P_0\hat{x}$
 - (c) $-\frac{1}{2}P_0\hat{x}$
 - (d) $\frac{3}{2}P_0\hat{x}$.
- Q3. A parallel plate capacitor has plates perpendicular to the z-axis and two dielectric slabs of dielectric constants K_1 and K_2 are placed in between (see figure). Ignoring fringing effects the boundary condition at the dielectric interface is:

- (a) $E_{1z} = E_{2z}$
- (b) $D_{1x} = D_{2x} \neq 0$
- (c) $D_{1y} = D_{2y}$
- (d) $D_{1z} = D_{2z}$.
- Q4. A sphere carries a polarization $\vec{P} = P_0 \hat{z}$. Electric field just outside its equator in the plane perpendicular to \hat{z} is:
 - (a) $\frac{P_0}{\epsilon_0} \hat{z}$ (b) $-\frac{P_0}{2\epsilon_0} \hat{z}$ (c) $-\frac{P_0}{3\epsilon_0} \hat{z}$ (d) $-\frac{P_0}{\epsilon_0} \hat{z}$.

Q5. If a point charge Q is kept at the centre of a dielectric sphere with radius R (dielectric constant K) the potential V(r), where r is measured from the centre of the sphere, is: (Take $V(\infty) = 0$)

(a)
$$V(r) = \frac{1}{4\pi\epsilon_0} \frac{Q}{Kr}$$
 for all r
(b) $V(r) = \begin{cases} \frac{1}{4\pi\epsilon_0} \frac{Q}{Kr} & \text{if } r > R \\ \frac{Q}{4\pi\epsilon_0} \left[\frac{1}{r} - \frac{1-K}{KR}\right] & \text{if } r \le R \end{cases}$
(c) $V(r) = \begin{cases} \frac{1}{4\pi\epsilon_0} \frac{Q}{r} & \text{if } r > R \\ \frac{1}{4\pi\epsilon_0} \frac{Q}{Kr} & \text{if } r \le R \end{cases}$
(d) $V(r) = \begin{cases} \frac{1}{4\pi\epsilon_0} \frac{Q}{r} & \text{if } r > R \\ \frac{Q}{4\pi\epsilon_0} \left[\frac{1}{Kr} - \frac{K-1}{KR}\right] & \text{if } r \le R \end{cases}$

- Q6. Consider a long cylinder with its axis on the z-axis. It is made of a dielectric material of electric susceptibility χ_e . If it is put in a uniform electric field $\vec{E} = E_0 \hat{y}$, the electric field \vec{E} , polarization \vec{P} and displacement current \vec{D} are, respectively,
 - (a) $E\hat{y}$, $\chi_e\epsilon_0 E\hat{y}$, $(1 + \chi_e)\epsilon_0 \vec{E}$ (b) $\frac{E}{1+\chi_e}\hat{y}$, $\frac{\chi_e\epsilon_0}{1+\chi_e}\vec{P}$, $\epsilon_0\vec{E}$ (c) $\frac{2}{2+\chi_e}E\hat{y}$, $\frac{2\chi_e}{2+\chi_e}\epsilon_0 E\hat{y}$, $2\left(\frac{1+\chi_e}{2+\chi_e}\right)\epsilon_0 E\hat{y}$ (d) $\frac{E}{2+\chi_e}\hat{y}$, $\frac{\chi_e\epsilon_0}{2+\chi_e}E\hat{y}$, $\left(\frac{1+\chi_e}{2+\chi_e}\right)E\hat{y}$.
- Q7. Consider the field inside and outside a long solenoid carrying a surface current K. The magnetic field inside the solenoid is $\mu_0 K\hat{z}$ and the axis of the solenoid coincides with the z-axis. If R is the radius of the solenoid, then on the basis of these facts and Biot-Savart law the value of the integral

$$\int_{-\infty}^{\infty} \mathrm{d}z' \int_{0}^{2\pi} \mathrm{d}\phi' \frac{R - r\cos(\phi - \phi')}{\left(z^2 + R^2 + r^2 - 2rR\cos(\phi - \phi')\right)^{3/2}}$$

is:

- (a) $\frac{4\pi}{R}$ for all r
- (b) $\frac{4\pi}{R}$ for r < R and 0 for r > R
- (c) $\frac{2\pi}{R}$ for r < R and 0 for r > R
- (d) $\frac{1}{R}$ for r < R and 0 for r > R.

- Q8. A disc with its centre at the origin and the axis as the z-axis carries a uniform charge density σ . If it is rotating with an angular velocity ω then the magnetic field on the z-axis at z = h will be:
 - (a) $\frac{\mu_0 \sigma \omega}{2} \left[\frac{R^2 + 2h^2}{\sqrt{R^2 + h^2}} 2h \right]$ (b) $\mu_0 \sigma \omega \left[\sqrt{R^2 + h^2} - h \right]$ (c) $2\mu_0 \sigma \omega \left[\sqrt{R^2 + h^2} - h \right]$
 - (d) $\frac{\mu_0 \sigma \omega R^2}{\sqrt{R^2 + h^2}}$.
- Q9. Consider a thin solenoid of length L and radius a (L >> a) bent into the shape of a ring so that it makes a toroid which is kept with its centre at the origin and the axis on the z-axis with the magnetic field in it being in the $\hat{\phi}$ direction. The solenoid carries a current I and it has N turns. Taking into account the similarity of the equations $\nabla \times \vec{B} = \mu_0 \vec{J}$ and $\nabla \times \vec{A} = \vec{B}$, the vector potential for this toroid on the z-axis at z will be:
 - (a) $\frac{\mu_0 L a^2 N I}{2(L^2 + z^2)^{3/2}}$
 - (b) $\frac{\mu_0 L a^2 N I}{(L^2 + 4\pi z^2)^{3/2}}$
 - (c) $\frac{\mu_0 \pi L a^2 N I}{4(L^2 + 4\pi z^2)^{3/2}}$
 - (d) $\frac{\mu_0 \pi L a^2 N I}{2(L^2 + 4\pi^2 z^2)^{3/2}}$
- Q10. Magnetic vector potential on the z-axis of the uniformly charged disc of Q8 is:(Use $\nabla^2 \vec{A} = -\mu_0 \vec{J}$ to calculate it.)
 - (a) $\frac{\mu_0 \sigma \omega z^2}{R} \hat{\phi}$
 - (b) 0
 - (c) $\frac{\mu_0 \sigma \omega R^2}{\sqrt{R^2 + z^2}} \hat{z}$
 - (d) $\mu_0 \sigma \omega z \hat{z}$.