Assignment 2

Questions to be submitted

1. For a given field $\vec{F}=2 x \hat{i}+3 y \hat{j}$ in a region of space, the dot product $\vec{F} \cdot \overrightarrow{\mathrm{~d} s}$, where $\overrightarrow{\mathrm{d} s}$ represents an infinitesimal area element on a cylinder of radius R at an angle of ϕ, is:
A. $R^{2} \mathrm{~d} \phi \mathrm{~d} z$
B. $2 R^{2} \cos ^{2} \phi \mathrm{~d} \phi \mathrm{~d} z$
C. $R^{2}\left(2-\sin ^{2} \phi\right) \mathrm{d} \phi \mathrm{d} z$
D. $R^{2}\left(2+\sin ^{2} \phi\right) \mathrm{d} \phi \mathrm{d} z$
2. The flux of the field in problem 1 over a quarter of the cylindrical surface extending from $\phi=\frac{\pi}{4}$ to $\phi=\frac{3 \pi}{4}$ is: (Take the length of the cylinder $=1$)
A. πR^{2}
B. R^{2}
C. $\frac{5 \pi R^{2}}{4}+\frac{R^{2}}{2}$
D. $\frac{5 \pi R^{2}}{4}$
3. If the density of the matter distributed in a part of space is given as $C x^{2}|z|$, where C is a constant, the mass of an infinitesimal volume element in spherical polar coordinates is given as:
A. $C r^{3} \cos ^{2} \theta|\cos \theta| \sin ^{2} \phi \mathrm{~d} \phi \mathrm{~d} r$
B. $C r^{5} \sin \theta \cos ^{3} \theta \cos ^{3} \phi \mathrm{~d} \phi \mathrm{~d} \theta \mathrm{~d} r$
C. $C r^{5} \sin \theta \cos ^{3} \theta \mathrm{~d} \phi \mathrm{~d} \theta \mathrm{~d} r$
D. $C r^{5} \sin ^{3} \theta|\cos \theta| \cos ^{2} \phi \mathrm{~d} \phi \mathrm{~d} \theta \mathrm{~d} r$
4. Mass of a sphere of radius R centred around the origin with density distribution $C x^{2}|z|$ is:
A. $\frac{\pi C R^{6}}{12}$
B. $\frac{C R^{6}}{16}$
C. $\frac{\pi C R^{6}}{6}$
D. $\frac{\pi C R^{6}}{8}$
5. Surface integral of vector field $\vec{V}(x, y)=x^{2} \hat{i}+x y z \hat{j}+y^{2} z \hat{k}$ over a unit sphere centred at the origin is (Use divergence theorem and spherical polar coordinates for integration):
A. $\frac{4 \pi}{3}$
B. $\frac{4 \pi}{15}$
C. $\frac{4 \pi}{5}$
D. $\frac{4 \pi}{10}$
6. For a vector field $\vec{V}(x, y)=x^{2} y \hat{i}+(x-y) \hat{j}+c(x+y) \hat{k}$, where c is a constant. The line integral $\oint \vec{V} \cdot \overrightarrow{d l}$ going anticlockwise over a square of side a, with two of the sides on the x and y axes, is (Use Stoke's theorem):
A. a^{2}
B. $a^{2}\left(1+c a^{2}\right)$
C. $a^{2}\left(1-\frac{a^{2}}{3}\right)$
D. $a^{2}\left(1+\frac{c a^{2}}{3}\right)$
7. A vector field is given as $\vec{F}=2 x y z \hat{i}+x^{2} z \hat{j}+x^{2} y \hat{k}$. The corresponding potential to this field $V(x, y, z)$ up to a constant is:
A. $3 x^{2} y z$
B. $-x^{2} y z$
C. $2 x^{2} y z$
D. $\frac{x^{2} y z}{2}$
8. For a given potential function $z-2 x^{2}-3 y^{2}$, a constant potential surface passing through $x=1, y=2$ and $z=1$ will be described by:
A. $z-2 x^{2}-3 y^{2}=0$
B. $z-2 x^{2}-3 y^{2}=$ constant
C. $2 x^{2}+3 y^{2}-z=13$
D. $z-2 x^{2}-3 y^{2}=5$
9. Using the gradient operator, one finds that the unit vector normal to the curve defined by $4 x^{2}+9 y^{2}=36$ at $\left(\frac{3}{2}, \sqrt{3}\right)$ is:
A. $\frac{2}{\sqrt{31}} \hat{i}+\frac{3 \sqrt{3}}{\sqrt{31}} \hat{j}$
B. $\sqrt[3]{\frac{3}{31}} \hat{i}+\frac{2}{\sqrt{3}} \hat{j}$
C. $\sqrt[3]{\frac{3}{31}} \hat{i}-\frac{2}{\sqrt{3}} \hat{j}$
D. $\frac{2}{\sqrt{3}}-\sqrt{\frac{3}{31}} \hat{j}$
10. The electrostatic potential on the axis of a uniformly charged disc with uniform charge density σ and radius R at a height z from its centre is:
A. $-\frac{\sigma}{2 \epsilon_{o}}|z|$
B. $\frac{\sigma}{2 \epsilon_{o}} \sqrt{R^{2}+z^{2}}$
C. $\frac{\sigma}{2 \epsilon_{o}}\left[\sqrt{R^{2}+z^{2}}-|z|\right]$
D. $\frac{\sigma}{2 \epsilon_{o}} R$
11. Using the electrostatic potential derived for a charged shell, the result for electrostatic potential $V(r)$ for a uniformly charged sphere of radius R is obtained, is given as
A. $-\frac{1}{4 \pi \epsilon_{o}} \frac{Q}{r}$ for all r
B. $\frac{1}{4 \pi \epsilon_{o}} \frac{Q}{R}$ for $r \leq R$ and $\frac{1}{4 \pi \epsilon_{o}} \frac{Q}{r}$ for $r \geq R$
C. $\frac{1}{4 \pi \epsilon_{o}}\left[\frac{30}{R}-2 \frac{Q r^{2}}{R^{2}}\right]$ for $r \leq R$
D. $\frac{1}{4 \pi \epsilon_{o}}\left[\frac{3 Q}{2 R}-\frac{1}{2} \frac{Q r^{2}}{R^{3}}\right]$ for $r \leq R$ and $\frac{1}{4 \pi \epsilon_{o}} \frac{Q}{r}$ for $r \geq R$
