Assignment 1 Introduction to Electricity and Magnetism

Indian Institute of Technology, Kanpur

To be submitted by $15 / 01 / 2015$ (Thursday), midnight

1. Two charges $+Q$ and $-Q$ are placed on the x-axis at distances $x=+a$ and $x=-a$ respectively. A charge $+q$ is placed on the y-axis at distance y from the origin. The force \vec{F} on the charge q is
(a) $\frac{Q q}{4 \pi \epsilon_{0}} \frac{2 y}{\left(y^{2}+a^{2}\right)^{3 / 2}} \hat{y}$
(b) $-\frac{Q q}{4 \pi \epsilon_{0}} \frac{2 a}{\left(y^{2}+a^{2}\right)^{3 / 2}} \hat{x}$
(c) $-\frac{Q q}{4 \pi \epsilon_{0}} \frac{2 a}{\left(y^{2}+a^{2}\right)} \hat{y}$
(d) $\frac{Q q}{4 \pi \epsilon_{0}} \frac{2 y}{\left(y^{2}+a^{2}\right)^{3 / 2}} \hat{x}$
2. Twelve charges of the same sign and magnitude Q are placed on a ring of radius R at equal distances. The axis of the ring is taken to be along the z-axis. A charge q is placed at a height of z on the axis of the ring. The force on the charge q is
(a) $\frac{Q q}{4 \pi \epsilon_{0}} \frac{6 R}{\left(z^{2}+R^{2}\right)^{3 / 2}} \hat{z}$
(b) $\frac{Q q}{4 \pi \epsilon_{0}} \frac{12 R}{\left(z^{2}+R^{2}\right)^{3 / 2}} \hat{z}$
(c) $\frac{Q q}{4 \pi \epsilon_{0}} \frac{12}{\left(z^{2}+R^{2}\right)^{3 / 2}} \vec{z}$
(d) $\frac{Q q}{4 \pi \epsilon_{0}} \frac{6}{\left(z^{2}+R^{2}\right)^{3 / 2}} \vec{z}$
3. A thin disc of radius R is placed in the $x y$-plane with its centre at the origin. The disc carries surface charge $\sigma=\frac{\sigma_{0}}{r}$, where r is the distance from the centre. Axis of the disc is taken along z-axis. A point charge q is placed on the axis of the ring at a height of z. The force on the point charge q is
(a) ∞
(b) $\frac{q \sigma_{0} R}{2 \epsilon_{0} z\left(R^{2}+z^{2}\right)^{1 / 2}} \hat{z}$
(c) $\frac{q \sigma_{0}}{\epsilon_{0} R\left(R^{2}+z^{2}\right)^{1 / 2}} \vec{z}$
(d) $\frac{q \sigma_{0}}{2 \epsilon_{0} R\left(R^{2}+z^{2}\right)^{1 / 2}} \vec{z}$
4. Take two infinitely long overlapping cylinders each of radius R. One cylinder has the charge density ρ and the other one has $-\rho$. The distance between the axes of the two cylinders is $a(a<2 R)$. The magnitude of the electric field in the overlapping region is
(a) $\frac{a \rho}{2 \epsilon_{0}}$
(b) $\frac{a \rho}{3 \epsilon_{0}}$
(c) $\frac{a \rho}{\epsilon_{0}}$
(d) $\frac{a \rho}{4 \epsilon_{0}}$
5. Divergence of the vector field described by the function $\vec{f}(x, y, z)=$ $x^{2} \hat{x}+6 x y z \hat{y}+z^{2} x \hat{z}$ is
(a) $3 x$
(b) $2 x+8 x z$
(c) $x+6 x z$
(d) $x y z+z$
6. If divergence of the vector field $\vec{A}(x, y, z)=2 \alpha x \hat{x}+\beta y \hat{y}-3 \gamma z \hat{z}$ is zero then
(a) $\alpha+\frac{\beta}{6}-\gamma=0$
(b) $\frac{\alpha}{2}+\beta-\frac{\gamma}{2}=0$
(c) $\frac{\alpha}{3}+\frac{\beta}{6}-\frac{\gamma}{2}=0$
(d) $\frac{2}{\alpha}+\frac{1}{\beta}-\frac{3}{\gamma}=0$
7. Electric field for a charge distribution is given as $\vec{E}(\mathrm{r})=C \frac{e^{-\lambda r}}{r^{3}} \vec{r}$, where C is a constant and r is the distance from the origin. If we take a very small sphere of radius ϵ around the origin, the charge enclosed by this sphere in the limit of $\epsilon \rightarrow 0$ is given by
(a) 0
(b) $4 \pi \epsilon_{0} C$
(c) $4 \epsilon_{0} C$
(d) $\epsilon_{0} C$
8. For the electric field $\vec{E}(r)=C \frac{e^{-\lambda r}}{r^{3}} \vec{r}$, the flux through a shell of radius R and infinitesimal thickness $d R$ (centre of the shell is at the origin) is given by
(a) $C \lambda e^{-\lambda R} d R$
(b) $4 \pi C \lambda e^{-\lambda R} d R$
(c) $-4 \pi C \lambda e^{-\lambda R} d R$
(d) $-C \lambda e^{-\lambda R} d R$
9. The charge density $\rho(r)$ for $\vec{E}(r)=C \frac{e^{-\lambda r}}{r^{3}} \vec{r}$ is
(a) $4 \pi C \epsilon_{0} \delta(\vec{r})-C \epsilon_{0} \lambda \frac{e^{-\lambda r}}{r^{2}}$
(b) $\frac{C \delta(\vec{r})}{\epsilon_{0}}$
(c) $4 \pi C \epsilon_{0} \delta(\vec{r})+\epsilon_{0} C \lambda \frac{e^{-\lambda r}}{r^{2}}$
(d) $\frac{-\epsilon_{0} C \lambda e^{-\lambda r}}{r^{2}}$
